Self-Constructing Graph Convolutional Networks for Semantic Segmentation of Historical Maps

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Yet Deep Convolutional Neural Networks for Semantic Segmentation

Semantic Segmentation using deep convolutional neural network pose more complex challenge for any GPU intensive work, as it has to compute million of parameters resulting to huge consumption of memory. Moreover, extracting finer features and conducting supervised training tends to increase the complexity furthermore. With the introduction of Fully Convolutional Neural Network, which uses finer ...

متن کامل

Deep Context Convolutional Neural Networks for Semantic Segmentation

Recent years have witnessed the great progress for semantic segmentation using deep convolutional neural networks (DCNNs). This paper presents a novel fully convolutional network for semantic segmentation using multi-scale contextual convolutional features. Since objects in natural images tend to be with various scales and aspect ratios, capturing the rich contextual information is very critica...

متن کامل

Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling

Semantic role labeling (SRL) is the task of identifying the predicate-argument structure of a sentence. It is typically regarded as an important step in the standard NLP pipeline. As the semantic representations are closely related to syntactic ones, we exploit syntactic information in our model. We propose a version of graph convolutional networks (GCNs), a recent class of neural networks oper...

متن کامل

Towards constructing an Integrative, Multi-Level Model for Cognition: The Function of Semantic Networks

Integrated approaches try to connect different constructs in different theories and reinterpret them using a common conceptual framework. In this research, using the concept of processing levels, an integrated, three-level model of the cognitive systems has been proposed and evaluated. Processing levels are divided into three categories of Feature-Oriented, Semantic and Conceptual Level based o...

متن کامل

Learning Graph-Structured Sum-Product Networks for Probabilistic Semantic Maps

We introduce Graph-Structured Sum-Product Networks (GraphSPNs), a probabilistic approach to structured prediction for problems where dependencies between latent variables are expressed in terms of arbitrary, dynamic graphs. While many approaches to structured prediction place strict constraints on the interactions between inferred variables, many real-world problems can be only characterized us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstracts of the ICA

سال: 2023

ISSN: ['2570-2106']

DOI: https://doi.org/10.5194/ica-abs-6-11-2023